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Using the example  of sur face  waves  in a heavy liquid, the a r t i c l e  d i scusses  the propagat ion of 
a so l i t a ry  wave in a nonhomogeneous medium.  Anana ly s i s  is made of p r o c e s s e s  of the decom-  
posi t ion of a wave into so l i ta ry  waves ,  as  a function of d i f fe rences  in the depth. 

1. Sol i tary  waves,  as  a specif ic  type of nonl inear  wave motion in d i spe r s ion  media,  have been studied 
intensively in connection with p rob l ems  in hydraul ics ,  p l a s m a  physics ,  and e lec t rodynamics .  As is well  
known [1, 2], an a r b i t r a r y  per turba t ion ,  ove r  the cour se  of t ime, decomposes  into a number  of so l i t a ry  waves ,  
whose number  and ampli tude may  be found f r o m  the laws of conservat ion .  In connection with the p ro b l em 
of the exis tence and s tabi l i ty  of nonlinear  s ta t ionary  waves ,  the evolution of a so l i ta ry  wave in a nonhemoge-  
neous med ium is  of in te res t .  In the p resen t  ar t ic le ,  this  p rob l em is cons idered  for  waves  of va r iab le  depth, 
for  which a re la t ive ly  s imple  exper imen ta l  ver i f ica t ion  of the theore t i ca l  data is poss ib le .  A number  of p rob-  
l e m s  with r e s p e c t  to the propagat ion  of a so l i t a ry  wave in a nonhomogeneous medium have a l ready  been d i s -  
cussed  in the l i t e ra tu re ,  f o r  example ,  the evolution of an isola ted wave has been studied in a l inear  approx i -  
mat ion  [3], and the p r o b l e m  of the "ad iaba t ic"  r e s t ruc tu r ing  of a so l i t a ry  wave, with a suff icient ly slow change 
of the depth, has been  solved in a nonl inear  s ta tement  [4, 5]. Numer ica l  solut ions a r e  known to the nonlin- 
ea r  p rob l em of a so l i t a ry  wave running against  the shore  [6, 7], and there  has been exper imen ta l  work  on 
this  subject  [8, 9]. 

The p re sen t  a r t i c l e  d i s cus se s  the evolution of a s o l i t a r y  wave in a nonhomogeneous zone of finite di- 
mensions;  the asympto t i c  f o r m  of the wave motion at t--*~ is  found. 

2. As is well  known, the behav io r  of a wave on the su r face  of a liquid of va r i ab le  depth is  mainly  de- 
t e rmined  by three  independent p a r a m e t e r s :  the nonl inear i ty  (the Mach number  M = u / ~  the d i spers ion  
D= h2/X2; and the nonhomogeneity N = X / L ,  where u is  the veloci ty  of the pa r t i c l e s  of the liquid, g is  the ac -  
ce le ra t ion  due to gravi ty ,  h is the depth of the liquid, X is  the wave length, and L is the cha rac t e r i s t i c  d imen-  
sion of the nonhomogeneity.  Depending on the re la t ionships  between these  p a r a m e t e r s ,  different  types  of 
wave motion m a y  develop. Limiting ou r se lves  in what follows to the case  of a so l i t a ry  wave of smal l  ampl i -  
tude (M, D <<1), depending on the value of the p a r a m e t e r  of the nonhomogeneity,  we distinguish five c h a r a c t e r -  
i s t ic  regions  in which the wave p r o c e s s e s  a r e  different:  region I, where  N>>I; region II, where  N~ 1; r e -  
gion HI, where  M, D<<N<<I; region IV, where  N ~ M ,  D; and region V, where  N<<M, D. In regions  I-III ,  the 
nonhomogeneity is  sha rp  (N>>M, D), so that the nonl inear  and d i spe r s ion  ef fec ts  cannot act  during the t ime  
requi red  for  a pulse  to pa s s  through a zone of va r i ab le  depth; in these  regions ,  the solution is descr ibed  by 
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the f o r m u l a s  of the l inear  theory.  In region V the nonhomogeneity is  suff iciently 
smooth  so that  the wave, locally,  r e m a i n s  s ta t ionary ,  and i ts  ampli tude and dura -  
t ion v a r y  "adiaba t ica l ly ."  Another  c lass i f ica t ion  of wave p r o c e s s e s  may  also  be 
made.  In reg ions  E I -V  the nonhomogeneity is  smooth,  N<< 1,and the re f lec ted  wave 
m a y  be neglected.  In region I, N>>I, on the con t ra ry ,  the nonhomogeneity may  be 
approx imated  by a step,  which s impl i f ies  the p rob l em considerably .  Of course ,  the 
above sepa ra t ion  into five regions  is  of an a r b i t r a r y  charac te r ,  s ince the exact 
boundar ies  of the regions  cannot be defined. We shall  a l so  a s s u m e  that the o v e r -  
al l  drop in the depth is  re la t ive ly  smal l ,  so that  the K o r t e v e g - d e  Vr i e s  a p p r o x i m a -  
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tion is  valid on both s ides  of the nonhomogeneous zone  [1, 2]. In what follows, we shall  cons ider  the wave 
mot ions  in each  of the above regions .  

3. Region I. In th is  region the wave p r o c e s s e s  a r e  studied on the bas i s  of the fo rmu la s  of the l inear  
theory;  the depth v a r i e s  jumpwise  (Fig. 1). This  p rob l em is  eas i ly  solved (see, fo r  example  [10]) and, fo r  a 
given fall ing wave 

= Ao Oh' + I , r :  = 2h: , . /Aog" .  (3.1) 

fo r  the fo rward  u+ and re f l ec ted  u_ veloci t ies  we find the following express ions :  

u+ (t, O) = PA o seh~t / To, u_(t, 0) = RAo sch2t / To 

2 VH-~,~ R (HI~ = (3.2) 

Thus, the fo rward  and re f lec ted  pulses  have a " s o l i t a r y - t y p e ,  form;  however,  the i r  durat ion dif fers  
f r o m  the durat ions of s ta t ionary  so l i t a ry  waves,  and they have the ampl i tudes  PA 0 and RA0, respec t ive ly .  
As a resu l t  of this ,  the pu lses  s t a r t  to f o r m  into s ta t ionary  waves .  As is  well  known, the evolution of an in i -  
t ial  pe r tu rba t ion  is  de te rmined  by the value of the p a r a m e t e r  of s imi l a r i t y  (r [1] 

r = T ] /6AgWh -v* (3.3) 

(for a so l i t a ry  wave (re=~fi~). Using (3.1) and (3.2) we obtain for  the fo rward  and re f lec ted  waves  

~+ ----- ]/'i-2 ]/2HI,2/(HV~+. t), 6_ = 1/ '~]/`H'/ ' ,  13-- t)/'Hv'-~ 1~ -T- 1) (3.4) 

F igu re  2 gives  the dependences of (r+ and (r_ on the drop in the depth H12. If the wave is  t r a n s f o r m e d  
on a slope with H12 > 1, the re f lec ted  wave is fo rmed  only into one so l i ta ry  wave (in this case  there  is the 
poss ib i l i ty  of the fo rmat ion  of an osci l la t ing wake behind the pulse [1]), s ince (r_ < 4-1~. The fo rward  wave 
s e p a r a t e s  into so l i t a ry  waves ,  whose number  is  de te rmined  by the laws of conserva t ion  [1]. Thus, with(r+ ( 
2(r c (I-It2(2.25), two so l i t a ry  waves  a r e  fo rmed  with the ampl i tudes  

[ r J r 4~+~ / ~ - i (3.5) ]/A1,2 / PAo = ~ t __~ 1 3z+~, / z~ 2 

With H~2 > 2.2 5, the fo rward  wave s epa ra t e s  into three  sol i ta ry  waves,  etc.  If H12 < 1, the forward  wave is 
fo rmed  into a single solitary, wave, while the re f lec ted  wave does not tend toward a s ta t ionary  s ta te  at a11, 
since, fo r  it, fu_dt  < 0; in this case, a wave packet  with a h igh-f requency filling will be propagated  toward the 
side z < 0 (see, fo r  example  [11]). In what follows, we shall  cons ider  the fal l ing of a wave into a zone with 
H12 > i. 

4. Region II (N.~ 1). In this region it is also possible to neglect the influence of nonlinear and disper- 
sion effects with the passage of a pulse through a zone of variable depth; however, the actual relief of the 
bottom must be taken into account. The mathematical problem comes down to the solution of linear differ- 
ential equations, but their integrals are unknown if the depth varies arbitrarily. For certain functions h (z) 
(for example, a linear slope) the solution is expressed in terms of special functions and the problem of the 
passage of a pulse through a nonhomogeneous zone is solved completely. Without going through the required 
calculations for these special eases, we limit ourselves to a few evaluations which bring out the effect of the 
finite nature of the dimensions of the transition region. It is clear that the presence of a finite length of the 
nonhomogeneous zone leads to an increase in the coefficient of the passage of the wave and, consequently, to 
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a l a rge  value of or+. F o r  example ,  consider ing a t r an s fo rma t ion  on a 
slope, approximated by two steps (Fig. 3), we obtain 

~(~) = v ~  ~r4HI~2/ (H~-~ l ) (H~ q- ~) (Hla=hl/h~, Ha~=h3]h2) (4.1) 

It i s  eas i ly  seen  that  (r+ (2) > (r+ with an identical  overa l l  drop H12 
and, consequently,  that with the p r e s e n c e  of two s teps  the re  is  the pos -  
s ibi l i ty  of the fo rmat ion  of a l a r g e r n u m b e r  of so l i t a ry  waves  than with 
the t r ans fo rma t ion  of a w a v e ~ n  one step.  A m a x i m a / v a l u e  of the func- 
t ion is a ained at HtlG 

We must  emphas ize  once again  that in regions  I - I I I  the p rob l em of the evolution of a so l i t a ry  wave is 
divided into two s imple  p rob lems :  the t r ans fo rma t ion  of a so l i t a ry  wave in a homogeneous zone (the l inea r  
approximation) ,  and the decomposi t ion of the initial pulse in a homogeneous zone. 

5. Regions I I I -V (N<<I). With a smooth  nonhomogeneity,  the re f l ec ted  wave can be neglected, and the 
hydrodynamic  equations can be brought  down to the "nonhomogeneous" K o r t e v e g - d e  Vr ie s  equation [4] 

+ - - _ _ 4 - _  = 0 ,  z =  --t (5.1) gh ~- q- u ~- 6g'/~-a~ 3 ' 4 gu 

If the p a r a m e t e r s  of the nonlineari ty,  d ispers ion,  and nonhomogeneity a r e  of the s ame  o rde r  of mag-  
nitude, it is  not poss ib le  to obtain a solution of Eq. (5.1). However,  express ions  for  the momen t s  of the ve -  
loei ty  can be obtained in explicit  f o r m  [1]. Thus,  in tegra t ing (5.1) with r e spec t  to % for  the f i r s t  moment  
we eas i ly  obtain 

hV'(z) i u(z' t)dt : h~" i uodt (5.2) 

Multiplying Eq. (5.2) by u, and ca r ry ing  out analogous computat ions,  for  the second moment  we obtain 

h'/2(z) i u2(z, t )d t= h~ ~ i uo~dt (5.3) 
- - o o  - - ~  

It  i s  eas i ly  seen  that the second moment  coincides with the mean  value of the energy  flux [4]. If  the 
d i spers ion  t e r m  (03u/3~ -3) in (5.1) cannot be neglected,  it is  imposs ib le  to obtain expres s ions  in explicit  f o r m  
for  momen t s  of higher  o rde r .  In many  cases ,  a knowledge of even two momen t s  m a k e s  it poss ib le  to solve 
the p rob lem of the decomposi t ion of a wave into two soli tary waves;  at  the s a m e  t ime  an exact  solution in the 
nonhomogeneous region may  be r a t h e r  complicated.  We shah  cons ider  each  region separa te ly .  

6. Region III  ~M, D<<N<<I). In this case,  in Eq. (5.1) we can neglect  the nonl inear  and d i spers ion  
t e r m s  (since, as  has a l ready  been pointed out, the l inea r  approximat ion  is valid in regions  I-I / I) ,  and the 
equation is  eas i ly  integrated:  

u(z, ~) = A o [hl/ h (z)]V'sch2v / T O (6.1) 

As is  evident f r o m  (6.1), the ampli tude of the wave inc reases ,  while the durat ion r ema ins  unchanged. 
A knowledge of the solution of (6.1) p e r m i t s  using the laws of conserva t ion  to solve the p rob lem of the sub- 
sequent t r a n s f o r m a t i o n  of a wave in a zone with a constant  depth (h= h2). Omitt ing the computat ions,  we ob- 
tain the resu l t  that the wave is  divided into two so l i ta ry  waves  with the ampl i tudes  

~/A1 ,2 /Ao  = 1/2 S[/~ {t ~ ~ t  - -  4/3 [l --/~1~/']} (6.2) 

i f  I-I12 < 1.85. With la rge  drops,  the wave is divided into th ree  so l i t a ry  waves,  etc.  F o r  this case ,  the p a r a m -  
e t e r  of similarity is equal to 

= Vi2H~/~ (6.3) 

We note that, in a weakly nonhomogeneous medium (N<<I), the p a r a m e t e r  q is  g r e a t e r  than in the case  
of a jumpwise  change in the depth (N>>I). This is connected with the fact  that there is no ref lect ion,  as  a 
resu l t  of which the wave which has  been  t r a n s f o r m e d  through a non_homogeneous zone "contains  more  sol i -  
t a r y  waves  within i t se l f . "  

A r i s e  in the value of the ampli tude of the wave leads  to a s i tuat ion in which nonl inear  effects  s t a r t  to 
have an influence. Since in th is  case ,  the d i spe r s ion  d e c r e a s e s  (D ~ h/gT02), the prof i le  of the wave s t a r t s  
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to become  dis tor ted.  Under  these  conditions, the solution of Eq. (5.1) is descr ibed  by a quas i - s imple  
wave [4] 

z 

0 

Although the prof i le  of the wave is given impl ic i t ly  by fo rmula  (6.4), its moment s  can eas i ly  be  found, 
as  before ,  using fo rmulas  (5.2) and (5.3). Therefore ,  in a zone with h=h2, the wave divides into two so l i ta ry  
waves,  in accordance  with (6.2). With El2 >1.85, the wave is t r a n s f o r m e d  into a sequence of three so l i ta ry  
waves,  etc.  We note that  the calculat ion of momen t s  of any given order ,  r equ i red  fo r  solution of the p rob-  
l e m  of the decomposi t ion of the wave into n so l i ta ry  waves,  p r e sen t s  no difficult ies.  Neglecting the d i spe r -  
sion t e r m  in (5.1) we eas i ly  find 

h~/4 undt = h~'~/4 S uo"dt (n = t,  2 . . . .  ) ( 6 . 5 )  
- - o o  - - o o  

(With the p r e sen ce  of dispers ion,  only the f i r s t  two moments  of (5.2) and (5.3) can be found in explicit  form.)  

Thus,  in region HI, t he re  is  both the wave in the nonhomogeneous form,  and i ts  a sympto t ic  f o r m  at 
t - - ~ .  

The sole l imi ta t ion on the drop in the depth (or, what is  the same  thing,on the length of the nonhomoge- 
neous zone) is connected with the poss ibi l i ty  of the col lapse  of the wave before  it comes  out into a region with 
a constant  depth. F o r  the solution of (6.4), the condition for  the b reak ing  of a wave has the f o r m  [4] 

z 

lh-'h(z) dz = 3 ~f3" (6.6) �9 - - T -  gT~176 
0 

F o r  a constant slope of the bot tom 8 h / S z = - h l / L ;  f r o m  this we obtain 

gTohlL-*Ao -1 (6.7) 

At depths cor responding  to condition (6.7), the d i spe r s ion  t e r m s  become considerable ,  which l imi t s  
the s teepness  of  the wave f ront  (see Sec. 8). Thus, although the p a r a m e t e r s  of the wave a r e  at f i r s t  s a t i s -  
f ied in region III~ l a t e r  on it  is  n e c e s s a r y  to take account of the r i s ing  nonl inear i ty  and of the ana lys i s  made 
above, which is  valid in the region shown schemat ica l ly  in Fig. 4 (hatched region).  With l a rge  va lues  of z, 
the p a r a m e t e r s  of the wave cor respond  to region IV. 

7. Region V. In th is  region, the depth v a r i e s  sufficiently slowly so that, locally,  the wave may be r e -  
garded as  s ta t ionary .  In this  case ,  a so l i ta ry  wave is "adiabat ical ly"  reorganized,  maintaining i ts  f o r m  un- 
changed. This  case  has been  d iscussed  in [4, 5], in which the resu l t  is  obtained that  the ampli tude of a so l i -  
t a r y  wave v a r i e s  as  a function of the depth in the following manner :  

A = A o [ h l / h  (~)]~/~ ( 7 . 1 )  

The ampli tude of a so l i t a ry  wave r i s e s  more  rapidly  than the ampli tude of a quas i - s imp le  wave (6.4). 
This  l a t t e r  fact  is connected with a dec rea se  of the t ime  (in a Riemann wave, the t empora l  durat ion does not 
vary)  requi red  fo r  r egenera t ion  of the quas i - s t a t ionary  f o r m  of the pulse.  However,  as  is  eas i ly  shown [see 
(5.2)], a solution in the f o r m  of a so l i ta ry  wave with a va r iab le  ampli tude does not co r r e spond  to the equa-  
t ion for  the f i r s t  moment .  This  is bound up with the following fact .  Since the extension of a so l i t a ry  wave 
is  infinite, it is  c l ea r  that  it m a k e s  no sense  to speak of the s ta t ionary  nature of the whole pulse in the non- 
homogeneous zone. However,  the par t  of the pulse in which is concentrated,  for  example,  99% of the whole 
energy,  i s  located local ly in a region with a constant  depth, and is  quas i - s t a t ionary  (we can even identify it  
with a so l i t a ry  wave).  The re fo re ,  the fa i lure  to sa t is fy  (5.2) can be at t r ibuted to "uns teady-s ta te  wakes , "  
which a lso  make a contr ibution to the in tegral  fud t .  Thus, during i ts  propagat ion,  the pulse re ta ins  i ts  sol i -  
t a r y - t y p e  form,  radia t ing the " exces s "  pa r t  of the value of fud t  equal to (H123/4-1)fu0dt into the wake.* We 

�9 emphas ize  that the condition fo r  an adiabatic  change in a so l i ta ry  wave is L>>A/M, and not only L>>~t; the 
la t te r  is the condition for  the absence  of a r e f l ec ted  wave.  Since the Mach number  r i s e s  with propagat ion,  
the condition of the adiabat ic  approximat ion is sa t i s f ied  with g r e a t e r  accuracy .  This is connected with a 
dec r ea se  in the duration of a so l i t a ry  wave with a growth in its ampli tude.  

*An analogous si tuation ex is t s  a l so  for  dissipat ive media  in which, with smal l  losses ,  a so l i t a ry  wave r e -  
ta ins  i ts  f o r m  independently of the value of fud t  [12, 13]. 
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8. Region IV. In region IV, the p a r a m e t e r s  of nonlineari ty,  d ispers ion,  and nonhomogeneity a r e  of the 
s a m e  o rde r  of magnitude,  and this ease  is  in te rmedia te  between the cases  d i scussed  in Sees.  6 and 7. The 
effect  of the d i spe r s ion  leads  to a s i tuat ion in which the durat ion of the wave will pa r t i a l ly  "follow" behind 
the change in i t s  amplitude; however,  not to such a degree  as  with the adiabat ic  change of a so l i t a ry  wave.  
In addition, t he re  is  an i nc rea se  in the radiat ion of a so l i ta ry  wave into the wake. This  leads  to a si tuation 
in which the pulse becomes  b r o a d e r  compared  to a so l i ta ry  wave with the same  amplitude,  and the wakes 
have a finite energy.  As a resul t ,  the ampli tude of a pulse  r i s e s  in a e c o r d a n e e w i t h a l a w o f t h e t y p e  [hl/h(z)]O~ , 
where  s/4 < a <s/2. Using the laws of conserva t ion  (5.2) and (5.3), it is imposs ib le  to give an unambiguous an-  
swer  to the p rob l em  of the fu r the r  evolution of a pulse .  It  is  c l e a r  that, as  a resu l t  of the l a rge  amount of 
radia t ion of the energy of a so l i t a ry  wave into the wake, the drop in the depth requi red  fo r  the fo rma t ion  of 
two so l i ta ry  waves  r i s e s  f r o m  1.85 (region III) to infinity (region V). The complete  solution of the p r o b l e m  
of the t r ans fo rma t ion  of a wave is  bound up with the solution of a nonl inear  equation with va r i ab le  coeff i-  
c ients  and, at  the p r e s en t  t ime,  i s  unknown. We note only that, when the ampl i tude  of the wave r i s e s  to such 
a point that M>>N, the so l i t a ry  wave par t  of the pulse v a r i e s  adiabat ical ly,  in accordance  with the fo rmula  
(7.1). 

9. Let us compare the data obtained with the existing results. The formation of solitary waves after 
the passage of a wave through a nonhomogenecus zone has been observed under natural conditions [14]. In 
[7], an electronic computer was used for a numerical solution of the problem of the passage of a solitary 
wave over a sloping shore with an overall drop Hi2 = 2. In accordance with the classification adopted, the 
parameters of a solitary wave were referred to three regions, and the numerical solution confirmed the non- 
l i nea r  deformat ion  of the wave in accordance  with (6.4). Af te r  i ts  exit  into a zone with a constant  depth, the 
pulse  decomposed  into th ree  so l i t a ry  waves ,  which co r re sponds  to the theore t ica l  value a t  H12 > 1.85. A non- 
l inea r  d is tor t ion of the wave profi le ,  cor responding  to the conditions of region III, has a lso  been obse rved  
in numer i ca l  calculat ions [6]. 

Seve ra l  a r t i c l e s  have d i scussed  the t r ans fo rma t ion  of a wave over  a slope which does not come out 
into a zone of constant  depth; in this  case,  the p a r a m e t e r s  M, D, N cor responded  to region IV [6, 8, 9]. In 
these  cases ,  the degree  of i nc rease  of the ampli tude in th ree  d imensions  inc reased  as  a function of the Maeh 
number;  fo r  a s m a l l e r  slope of the bottom, the ampli tude of the wave was g r e a t e r .  The lack of complete  in- 
fo rmat ion  on wave p r o c e s s e s  in a nonhomogeneous zone does not p e r m i t  a m o r e  detai led compar i son  be-  
tween theore t ica l  and exper imenta l  data. 

The p r o c e s s e s  cons idered  above a l so  take place in magnetosonic  waves  in cosmic  p la sma ,  with a v a r i -  
able magnet ic  field. 

The author  thanks A. V. Gaponov, A. G. Litvak, and L. A. Os t rovski i  for  the i r  evaluation of the r e su l t s  
of the work. 
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