THE EVOLUTION OF A SOLITARY WAVE
IN A NONHOMOGENEOUS MEDIUM

E. N. Pelinovskii UDC 532.591 +546.212

Using the example of surface waves in a heavy liquid, the article discussesthe propagation of
a solitary wave in a nonhomogeneous medium, Ananalysisis made of processes of the decom-
position of a wave into solitary waves, as a function of differences in the depth.

1. Solitary waves, as a specific type of nonlinear wave motion in dispersion media, have been studied
intensively in connection with problems in hydraulics, plasma physics, and electrodynamies. As is well
known [1, 2}, an arbitrary perturbation, over the course of time, decomposes into a number of solitary waves,
whogse number and amplitude may be found from the laws of conservation. In connection with the problem
of the existence and stability of nonlinear stationary waves, the evolution of a solitary wave in a nonhomoge-
neous medium is of interest. In the present article, this problem is considered for waves of variable depth,
for which a relatively simple experimental verification of the theoretical data is possible. A number of prob-
lems with respect to the propagation of a solitary wave in a nonhomogeneous medium have already been dis-
cussed in the literature, for example, the evolution of an isolated wave has been studied in a linear approxi-
mation [3], and the problem of the "adiabatic” restructuring of a solitary wave, with a sufficiently slow change
of the depth, has been solved in a nonlinear statement [4, 5]. Numerical solutions are known to the nonlin-
ear problem of a solitary wave running against the shore [6, 7], and there has been experimental work on
this subject [8, 9].

The present article discusses the evolution of a solitary wave in a nonhomogeneous zone of finite di-
mensions; the asymptotic form of the wave motion at t -« is found,

2. As is well known, the behavior of a wave on the surface of a liquid of variable depth is mainly de-
termined by three independent parameters: the nonlinearity (the Mach number M=u/V/gh; the dispersion
D=h?/A% and the nonhomogeneity N=A/L, where u is the velocity of the particles of the liquid, g is the ac-
celeration due to gravity, h is the depth of the liquid, A is the wave length, and L is the characteristic dimen-
sion of the nonhomogeneity. Depending on the relationships between these parameters, different types of
wave motion may develop. Limiting ourselves in what follows to the case of a solitary wave of small ampli~-
tude M, D<«1), depending on the value of the parameter of the nonhomogeneity, we distinguishfive character-
istic regions in which the wave processes are different: region I, where N>>1; region II, where N~ 1; re-
gion ITI, where M, D<«N<«1; region IV, where N~M, D; and region V, where N«M, D. In regions I-II, the
nonhomogeneity is sharp (N>>M, D), so that the nonlinear and dispersion effects cannot act during the time
requlred for a pulse to pass through a zone of variable depth; in these regions, the solution is described by

the formulas of the linear theory. In region V the nonhomogeneity is sufficiently

P smooth so that the wave, locally, remains stationary, and its amplitude and dura-
tion vary Madiabatically."” Another classification of wave processes may also be
made. In regions III-V the nonhomogeneity is smooth, N« 1,and the reflected wave
may be neglected. In region I, N>>1, on the contrary, the nonhomogeneity may be
approximated by a step, which simplifies the problem considerably, Of course, the
above separation into five regions is of an arbitrary character, since the exact
boundaries of the regions cannot be defined. We shall also assume that the over-
all drop in the depth is relatively small, so that the Korteveg—de Vries approxima-
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tion is valid on both sides of the nonhomogeneous zone [1, 2]. In what follows, we shall consider the wave
motions in each of the above regions.

3. RegionI. In this region the wave processes are studied on the basis of the formulas of the linear
theory; the depth varies jumpwise (Fig. 1). This problem is easily solved (see, for example [10]) and, for a
given falling wave

uo (£, 2) = A, sch? [t‘” (Veh+ 4/3) o1t = 2/ A 3.1)

for the forward v _ and reflected u_ velocities we find the following expressions:
u, (t, 0) = PA,sch® /Ty, u_(t, 0) = RA,sch* /T,

2V He . VEa—1 2
p__ Vi = p. Vi HaP .
Vit e (B3 3.2)

Thus, the forward and reflected pulses have a "solitary-type" form; however, their duration differs
from the durations of stationary solitary waves, and they have the amplitudes PA; and RA,, respectively.
As a result of this, the pulses start to form into stationary waves. As is well known, the evolution of anini-
tial perturbation is determined by the value of the parameter of similarity ¢ [1]

s=TV64g" b " 3.3)
(for a sohtary wave g = +v12). Using (3.1) and (3.2) we obtain for the forward and reﬂected waves
5, = VI VoH 2 (HE+ 1), o =VRVHE— )/ (HE+1) (3.4)

Figure 2 gives the dependences of g, and ¢_ on the drop in the depth Hyy. If the wave is transformed
on a slope with Hy,>1, the reflected wave is formed only into one solitary wave (in this case there is the
possibility of the formation of an oscillating wake behind the pulse [1]), since g_<v12. The forward wave
separates into solitary waves, whose number is determined by the laws of conservation [1]. Thus, withg <
20, (Hyy<2.25), two solitary waves are formed with the amplitudes

VA Ph =21+ 1- PRIy (3.5)

With Hy, > 2.25, the forward wave separates into three solitary waves, etc. If H;,< 1, theforwardwave is
formed into a single solitary wave, while the reflected wave does not tend toward a stationary state at all,
since, forit, fu_dt<0; inthis case: a wave packet with a high-frequency filling will be propagated toward the
side z< 0 (see, for example [11]). In what follows, we shall consider the falling of a wave into a zone with
Hyp>1.

4, Region II (N~1), In this region it is also possible to neglect the influence of nonlinear and disper-
gion effects with the passage of a pulse through a zone of variable depth; however, the actual relief of the
bottom must be taken into account. The mathematical problem comes down to the solution of linear differ-
ential equations, but their integrals are unknown if the depth varies arbitrarily, For certain functions h (z)
(for example, a linedar slope) the solution is expressed in terms of special functions and the problem of the
passage of a pulse through a nonhomogeneous zone is solved completely. Without going through the required
calculations for these special cases, we limit ourselves to a few evaluations which bring out the effect of the
finite nature of the dimensions of the transition region. It is clear that the presence of a finite length of the
nonhomogeneous zone leads to an increase in the coefficient of the passage of the wave and, consequently, to
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z a large value of ¢,. For example, considering a transformation on a
slope, approximated by two steps (Fig. 3), we obtain

7 op =VIZVIHG (HE+ )HE+1) Ha=lyhs, Ho=hhy  @.1)

It is easily seen that ¢ +(2) >g4 with an identical overall drop Hy,
Lol and, consequently, that with the presence of two steps there is the pos-
4 ! sibility of the formation of a larger number of solitary waves than with
Fig, 4 the transformation of a wave on one step. A maximal value of the func-
tion o-_f_z) is attained at h3=H%Z;

We must emphasize once again that in regions I-III the problem of the evolution of a solitary wave is
divided into two simple problems: the transformation of a solitary wave in a homogeneous zone (the linear
" approximation), and the decomposition of the initial pulse in a homogeneous zone.

5. Regions II-V (N«1). With a smooth nonhomogeneity, the reflected wave can be neglected, and the
hydrodynamic equations can be brought down to the *nonhomogeneous" Korteveg—de Vries equation [4]

dz

2
du | Khgu | 3 oh et 5.1)

du g
ghor T 5 fghov %8G 0, w=\

If the parameters of the nonlinearity, dispersion, and nonhomogeneity are of the same order of mag-
nitude, it is not possible to obtain a solution of Eq. (5.1). However, expressions for the moments of the ve-
locity can be obtained in explicit form [1]. Thus, integrating (5.1) with respect to 7, for the first moment
we easily obtain

oo ]

B (z) j u(z, t)dt = hi* S’ uodt (5.2)
Multiplying Eq. (6.2) by u, and carrying out analogous computations, for the second moment we obtain

Ko@) § w (@ yde =l [ugdt (5.3)
It is easily seen that the second moment coincides with the mean value of the energy flux [4]. If the
dispersion term (a3u/873) in (5.1) cannot be neglected, it is impossible to obtain expressions in explicitform
for moments of higher order. In many cases, a knowledge of even two moments makes it possible to solve
the problem of the decomposition of a wave into two solitaty waves; at the same time an exact solution in the
nonhomogeneous region may be rather complicated. We shall consider each region separately.

6. Region IIT M, D«N<«1). In this case, in Eq. (5.1) we can neglect the nonlinear and dispersion
terms (since, as has already been pointed out, the linear approximation is valid in regions I-III), and the
equation is easily integrated:

u(z, 1) = 4, [hl/h(z)]'/.schZT/To 6.1)

As is evident from (6.1), the amplitude of the wave increases, while the duration remains unchanged.
A knowledge of the solution of (6.1) permits using the laws of conservation to solve the problem of the sub-
sequent transformation of a wave in a zone with a constant depth (h=hy). Omitting the computations, we ob-
tain the result that the wave is divided into two solitary waves with the amplitudes

Vi A=, HE (L V11— Y, (1 — Ho'l} (6.2)

if Hyjy<1.85. With large drops, the wave is divided into three solitary waves, etc. For this case, the param-
eter of similarity is equal to

5= VI2H{; (6.3)
We note that, in a weakly nonhomogeneous medium (N<«1), the parameter ¢ is greater than in the case
of a jumpwise change in the depth (N>>1). This is connected with the fact that there is no reflection, as a

result of which the wave which has been transformed through a nonhomogeneous zone "contains more soli-
tary waves within itself.n

A rise in the value of the amplitude of the wave leads to a situation in which nonlinear effects start to
have an influence. Since in this ease, the dispersion decreases (D= h/gToz), the profile of the wave starts
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to become distorted. Under these conditions, the solution of Eq. (5.1) is described by a quasi-simple
wave [4] '

4 (2,7%) = Ay [hy 1 b (5)]sch? {To“l [1: —uk*g fh""dz']} (6.4)
. 0

Although the profile of the wave is given implicitly by formula (6.4), its moments can easily be found,
as before, using formulas (5.2) and (5.3). Therefore, in a zone with h=h,, the wave divides into two solitary
waves, in accordance with (6.2). With Hy,>1.85, the wave is transformed into a sequence of three solitary
waves, ete. We note that the calculation of moments of any given order, required for solution of the prob-
lem of the decomposition of the wave into n sohtary waves, presents no difficulties. Neglecting the disper-
sion term in (5.1) we easily find

o0

pinis S undt = h?n/4 juo‘ndt (n=1,2,..) (6.5)

(With the presence of dispersion, only the first two moments of (5.2) and (5.3) can be found in explicit form.)

Thus, in region III, there is both the wave in the nonhomogeneous form, and its asymptotic form at

t-ow,

The sole limitation on the drop in the depth (or, what is the same thing, on the length of the nonhomoge-
neous zone) is connected with the possibility of the collapse of the wave before it comes out into a region with
a constant depth. For the solution of (6.4), the condition for the breaking of a wave has the form [4]

(i) az = VE oo dy i (6.6)
o

For a constant slope of the bottom 8h/9z=—hy/L; from this we obtain
Hu=1+2 grpr-a 6.7)

At depths corresponding to condition (6.7), the dispersion terms become considerable, which limits
the steepness of the wave front (see Sec. 8). Thus, although the parameters of the wave are at first satis-
fied in region ITL later on it is necessary to take account of the rising nonlinearity and of the analysis made
above, which is valid in the region shown schematically in Fig. 4 (hatched region). With large values of z,
the parameters of the wave correspond to region IV.

7. Region V, Inthis region, the depth varies sufficiently slowly so that, locally, the wave may be re-
garded as stationary. In this case, a solitary wave ig "adiabatically” reorganized, maintaining its form un-
changed. This case has been discussed in [4, 5], in which the result is obtained that the amplitude of a soli-
tary wave varies as a function of the depth in the following manner:

A=Ay (b /R (" (1)

The amplitude of a solitary wave rises more rapidly than the amplitude of a quasi-simple wave (6.4).
This latter fact is connected with a decrease of the time (in a Riemann wave, the temporal duration does not
vary) required for regeneration of the quasi-stationary form of the pulse. However, as is easily shown [see
(5.2)], a solution in the form of a solitary wave with a variable amplitude does not correspond to the equa-
tion for the first moment. This is bound up with the following fact. Since the extension of a solitary wave-
is infinite, it is clear that it makes no sense to speak of the stationary nature of the whole pulse in the non-
homogeneous zone, However, the part of the pulse in which is concentrated, for example, 99% of the whole
energy, is located locally in a region with a constant depth, and is quasi-stationary (we can even identify it
with a solitary wave). Therefore, the failure to satisfy (5.2) can be attributed to "unsteady-state wakes,"
which also make a contribution to the integral [udt. Thus, during its propagation, the pulse retains its soli-
tary-type form, radiating the "excess" part of the value of [udt equal to (1{123/ 4—1)Juydt into the wake.x We
_emphasize that the condition for an adiabatic change in a solitary wave is L>3/M, and not only L>}; the
latter is the condition for the absence of a reflected wave, Since the Mach number rises with propagation,
the condition of the adiabatic approximation is satisfied with greater accuracy. This is connected with a
decrease in the duration of a solitary wave with a growth in its amplitude.

*An analogous situation exists also for dissipative media in which, with small losses, a solitary wave re-
tains its form independently of the value of fudt [12, 13].
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8. Region IV. In region IV, the parameters of nonlinearity, dispersion, and nonhomogeneity are of the
same order of magnitude, and this case is intermediate between the cases discussed in Secs. 6 and 7. The
effect of the dispersion leads to a situation in which the duration of the wave will partially "follow"” behind
the change in its amplitude; however, not to such a degree as with the adiabatic change of a solitary wave.
In addition, there is an increase in the radiation of a solitary wave into the wake. This leads to a situation
in which the pulse becomes broader compared to a solitary wave with the same amplitude, and the wakes
bave a finite energy. As a result, the amplitude of a pulse rises in accordance withalaw of the type [hy /h(z)1%,
where 34 < oz<3/2- Using the laws of conservation (5.2) and (5.8), it is impossible to give an unambiguous an-
swer to the problem of the further evolution of a pulse, Itis clear that, as a result of the large amount of
radiation of the energy of a solitary wave into the wake, the drop in the depth required for the formation of
two solitary waves rises from 1.85 (region III) to infinity (region V). The complete solution of the problem
of the transformation of a wave is bound up with the solution of a nonlinear equation with variable coeffi-
cients and, at the present time, is unknown. We note only that, when the amplitude of the wave rises to such
a point that M>>N, the solitary wave part of the pulse varies adiabatically, in accordance with the formula
(7.1).

9. Let us compare the data obtained with the existing results. The formation of solitary waves after
the passage of a wave through a nonhomogeneous zone has been observed under natural conditions [14], In
[7], an electronic computer was used for a numerical solution of the problem of the passage of a solitary
wave over a sloping shore with an overall drop Hjy=2. In accordance with the classification adopted, the
parameters of a solitary wave were referred to three regions, and the numerical solution confirmed the non-
linear deformation of the wave in accordance with (6.4). After its exit into a zone with a constant depth, the
pulse decomposed into three solitary waves, which corresponds to the theoretical value at Hy5>1.85. A non-
linear distortion of the wave profile, corresponding to the conditions of region III, has also been observed
in numerical calculations [6].

Several articles have discussed the transformation of a wave over a slope which does not come out
into a zone of constant depth; in this case, the parameters M, D, N corresponded to region IV [6, 8, 9]. In
these cases, the degree of increase of the amplitude in three dimensions increased as a function of the Mach
number; for a smaller slope of the bottom, the amplitude of the wave was greater. The lack of complete in-
formation on wave processes in a nonhomogeneous zone does not permit a more detailed comparison be-
tween theoretical and experimental data,

The processes considered above also take place in magnetosonic waves in cosmic plasma, with a vari-
able magnetic field.

The author thanks A. V. Gaponov, A, G. Litvak, and L. A. Ostrovskii-for their evaluation of the results
of the work.

LITERATURE CITED

1. Yu. A. Berezinand V. I, _Karpman, "The nonlinear evolution of perturbations in a plasma and other
dispersion media," Zh, Eksperim. i Teor. Fiz., 51, No. 5 (1966).
2. N.J. Zabusky and C. J. Galvin, "Secondary waves as solitons,” Trans., Amer. Geophys. Union, 49,
No. 1 (1968).
3. M. Tominaga, "Transformation of a wave profile over a sloping bottom," J. Oceanogr. Soc. Japan, 12,
No. 3 (1956).
4. L. A, Ostrovskii and E. N, Pelinovskii, "Transformation of waves on the surface of a liquid of variable
depth," Izv. Akad. Nauk SSSR, Fiz, Atmosfery i Okeana, 6, No. 9 (1970).
R. Grimshaw, "The solitary wave in water of variable depth,” J, Fluid Mech., 42, Part 3 (1970).
D. H. Peregrine, " Long waves on a beach," J. Fluid Mech., 27, Part 4 (1967).
7. 0.8, Madsen and C. C. Mei, "The transformation of a solitary wave over an uneven bottom,” J. Fluid
Mech., 39, Part 4 (1969).
8. F.E, Camfield and R. L. Street, "Shoaling of solitary waves on small slopes," J. Waterways and Har-
bors Div., Proc. Amer. Soc. Civil Engrs., 95, No. 1 (1969).
9. Z. K, Grigorasgh, "Experimental investigation of a solitary wave in a chamnel of variable cross section,”
Tr. Morsk. Gidrofiz. In-ta, Akad, Nauk SSSR, 5 (1955).
10. H. Lamb, Hydrodynamics, Dover (1932).
11.  Yu. A, Berezin, "The formation of solitary waves,” Zh. Tekh, Fiz., 38, No. 1 (1968).

o O
.

857



12. E. N, Pelinovskii, "The damping of nonlinear waves in dispersion media," Zh, Prikl, Mekhan. i Tekh,
Fiz., No. 2 (1971).

13. E. Ott and R. N, Sudan, "Damping of solitary waves," Phys. Fluids, 13, No. 6 (1970).
14. R. J. Burne, "Field occurrences of induced multiple gravity waves,” J. Geophys. Res., 74, No. 10 (1969),

858



